Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28.282
1.
Arch Microbiol ; 206(6): 273, 2024 May 22.
Article En | MEDLINE | ID: mdl-38772954

Acid protease is widely used in industries such as food processing and feed additives. In the study, low frequency magnetic field (LF-MF) as an aid enhances acid protease production by Aspergillus niger (A. niger). The study assessed mycelial biomass, the enzymic activity of the acidic protease and underlying mechanism. At low intensities, alternating magnetic field (AMF) is more effective than static magnetic fields (SMF). Under optimal magnetic field conditions, acid protease activity and biomass increased by 91.44% and 16.31%, as compared with the control, respectively. Maximum 19.87% increase in enzyme activity after magnetic field treatment of crude enzyme solution in control group. Transcriptomics analyses showed that low frequency alternating magnetic field (LF-AMF) treatment significantly upregulated genes related to hydrolases and cell growth. Our results showed that low-frequency magnetic fields can enhance the acid protease production ability of A. niger, and the effect of AMF is better at low intensities. The results revealed that the effect of magnetic field on the metabolic mechanism of A. niger and provided a reference for magnetic field-assisted fermentation of A. niger.


Aspergillus niger , Magnetic Fields , Peptide Hydrolases , Aspergillus niger/enzymology , Aspergillus niger/genetics , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics , Fermentation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Biomass , Mycelium/enzymology , Mycelium/growth & development , Mycelium/genetics
2.
Cell Host Microbe ; 32(5): 625-626, 2024 May 08.
Article En | MEDLINE | ID: mdl-38723598

Fungi colonize the mammalian gastrointestinal (GI) tract and can adopt both commensal and opportunistic lifestyles. In a recent issue of Nature, Liang et al. unraveled the complex interplay between Candida morphotypes and the gut bacterial microbiota and described a key role for candidalysin in gut colonization.1.


Candida , Gastrointestinal Microbiome , Gastrointestinal Tract , Symbiosis , Gastrointestinal Microbiome/physiology , Humans , Gastrointestinal Tract/microbiology , Animals , Candida/physiology , Fungal Proteins/metabolism , Fungal Proteins/genetics
3.
Mycoses ; 67(5): e13732, 2024 May.
Article En | MEDLINE | ID: mdl-38712846

BACKGROUND: Triazole-resistant Aspergillus fumigatus (TRAF) isolates are a growing public health problem with worldwide distribution. Epidemiological data on TRAF is limited in Africa, particularly in West Africa. OBJECTIVES: This study aimed to screen for the environmental presence of TRAF isolates in the indoor air of two hospitals in Burkina Faso. MATERIALS AND METHODS: Air samples were collected in wards housing patients at risk for invasive aspergillosis, namely infectious diseases ward, internal medicine ward, nephrology ward, pulmonology ward, medical emergency ward and paediatric ward. Sabouraud Dextrose Agar supplemented with triazoles was used to screen the suspected TRAF isolates and EUCAST method to confirm the resistance of suspected isolates. Sequencing of cyp51A gene was used to identify the resistance mechanism of confirmed TRAF isolates. RESULTS: Of the 198 samples collected and analysed, 67 showed growth of A. fumigatus isolates. The prevalence of TRAF isolates was 3.23% (4/124). One TRAF isolate exhibited a pan-triazole resistance. Sequencing of cyp51A gene identified the TR34/L98H mutation for this pan-triazole resistant isolate. This study showed for the first time the circulation of the pan-azole resistant isolate harbouring the TR34/L98H mutation in Burkina Faso. CONCLUSIONS: These findings emphasise the need to map these TRAF isolates in all parts of Burkina Faso and to establish local and national continuous surveillance of environmental and clinical TRAF isolates in this country.


Antifungal Agents , Aspergillus fumigatus , Cytochrome P-450 Enzyme System , Drug Resistance, Fungal , Fungal Proteins , Mutation , Triazoles , Aspergillus fumigatus/genetics , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/isolation & purification , Drug Resistance, Fungal/genetics , Triazoles/pharmacology , Humans , Burkina Faso/epidemiology , Fungal Proteins/genetics , Antifungal Agents/pharmacology , Cytochrome P-450 Enzyme System/genetics , Microbial Sensitivity Tests , Aspergillosis/microbiology , Aspergillosis/epidemiology , Air Microbiology
4.
Curr Microbiol ; 81(7): 173, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750329

The ability of fungi to effectively sense and internalize signals related to extracellular changing environments is essential for survival. This adaptability is particularly important for fungal pathogens of humans and plants that must sense and respond to drastic environmental changes when colonizing their hosts. One of the most important physicochemical factors affecting fungal growth and development is the pH. Ascomycota fungal species possess mechanisms such as the Pal/Rim pathway for external pH sensing and adaptation. However, the conservation of this mechanism in other fungi, such as Ustilaginomycetes is still little studied. To overcome this knowledge gap, we used a comparative genomic approach to explore the conservation of the Pal/Rim pathway in the 13 best sequenced and annotated Ustilaginomycetes. Our findings reveal that the Rim proteins and the Endosomal Sorting Complex Required for Transport (ESCRT) proteins are conserved in Ustilaginomycetes. They conserve the canonical domains present in Pal/Rim and ESCRT proteins of Ascomycota. This study sheds light on the molecular mechanisms used by these fungi for responding to extracellular stresses such as the pH, and open the door to further experimentations for understanding the molecular bases of the signaling in Ustilaginomycetes.


Fungal Proteins , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydrogen-Ion Concentration , Signal Transduction , Ascomycota/genetics , Ascomycota/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Phylogeny
5.
J Agric Food Chem ; 72(19): 11002-11012, 2024 May 15.
Article En | MEDLINE | ID: mdl-38700031

Due to the increasing demand for natural food ingredients, including taste-active compounds, enzyme-catalyzed conversions of natural substrates, such as flavonoids, are promising tools to align with the principles of Green Chemistry. In this study, a novel O-methyltransferase activity was identified in the mycelium of Lentinula edodes, which was successfully applied to generate the taste-active flavonoids hesperetin, hesperetin dihydrochalcone, homoeriodictyol, and homoeriodictyol dihydrochalcone. Furthermore, the mycelium-mediated OMT activity allowed for the conversion of various catecholic substrates, yielding their respective (iso-)vanilloids, while monohydroxylated compounds were not converted. By means of a bottom-up proteomics approach, three putative O-methyltransferases were identified, and subsequently, synthetic, codon-optimized genes were heterologously expressed in Escherichia coli. The purified enzymes confirmed the biocatalytic O-methylation activity against targeted flavonoids containing catechol motifs.


Biocatalysis , Catechol O-Methyltransferase , Flavonoids , Fungal Proteins , Shiitake Mushrooms , Shiitake Mushrooms/enzymology , Shiitake Mushrooms/genetics , Shiitake Mushrooms/chemistry , Shiitake Mushrooms/metabolism , Catechol O-Methyltransferase/genetics , Catechol O-Methyltransferase/metabolism , Catechol O-Methyltransferase/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Flavonoids/chemistry , Flavonoids/metabolism , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Mycelium/enzymology , Mycelium/genetics , Mycelium/chemistry , Mycelium/metabolism , Substrate Specificity
6.
PLoS Pathog ; 20(5): e1012215, 2024 May.
Article En | MEDLINE | ID: mdl-38701108

Fusarium head blight (FHB), caused by Fusarium graminearum species complexes (FGSG), is an epidemic disease in wheat and poses a serious threat to wheat production and security worldwide. Profilins are a class of actin-binding proteins that participate in actin depolymerization. However, the roles of profilins in plant fungal pathogens remain largely unexplored. Here, we identified FgPfn, a homolog to profilins in F. graminearum, and the deletion of FgPfn resulted in severe defects in mycelial growth, conidia production, and pathogenicity, accompanied by marked disruptions in toxisomes formation and deoxynivalenol (DON) transport, while sexual development was aborted. Additionally, FgPfn interacted with Fgα1 and Fgß2, the significant components of microtubules. The organization of microtubules in the ΔFgPfn was strongly inhibited under the treatment of 0.4 µg/mL carbendazim, a well-known group of tubulin interferers, resulting in increased sensitivity to carbendazim. Moreover, FgPfn interacted with both myosin-5 (FgMyo5) and actin (FgAct), the targets of the fungicide phenamacril, and these interactions were reduced after phenamacril treatment. The deletion of FgPfn disrupted the normal organization of FgMyo5 and FgAct cytoskeleton, weakened the interaction between FgMyo5 and FgAct, and resulting in increased sensitivity to phenamacril. The core region of the interaction between FgPfn and FgAct was investigated, revealing that the integrity of both proteins was necessary for their interaction. Furthermore, mutations in R72, R77, R86, G91, I101, A112, G113, and D124 caused the non-interaction between FgPfn and FgAct. The R86K, I101E, and D124E mutants in FgPfn resulted in severe defects in actin organization, development, and pathogenicity. Taken together, this study revealed the role of FgPfn-dependent cytoskeleton in development, DON production and transport, fungicides sensitivity in F. graminearum.


Actins , Fungal Proteins , Fungicides, Industrial , Fusarium , Microtubules , Plant Diseases , Triticum , Microtubules/metabolism , Fusarium/metabolism , Fusarium/pathogenicity , Fusarium/genetics , Fusarium/drug effects , Fusarium/growth & development , Actins/metabolism , Plant Diseases/microbiology , Fungal Proteins/metabolism , Fungal Proteins/genetics , Triticum/microbiology , Fungicides, Industrial/pharmacology , Spores, Fungal/metabolism , Spores, Fungal/growth & development , Reproduction
7.
Biotechnol J ; 19(5): e2400014, 2024 May.
Article En | MEDLINE | ID: mdl-38719614

Microbial production of L-malic acid from renewable carbon sources has attracted extensive attention. The reduced cofactor NADPH plays a key role in biotransformation because it participates in both biosynthetic reactions and cellular stress responses. In this study, NADPH or its precursors nicotinamide and nicotinic acid were added to the fermentation medium of Aspergillus niger RG0095, which significantly increased the yield of malic acid by 11%. To further improve the titer and productivity of L-malic acid, we increased the cytoplasmic NADPH levels of A. niger by upregulating the NAD kinases Utr1p and Yef1p. Biochemical analyses demonstrated that overexpression of Utr1p and Yef1p reduced oxidative stress, while also providing more NADPH to catalyze the conversion of glucose into malic acid. Notably, the strain overexpressing Utr1p reached a malate titer of 110.72 ± 1.91 g L-1 after 108 h, corresponding to a productivity of 1.03 ± 0.02 g L-1 h-1. Thus, the titer and productivity of malate were increased by 24.5% and 44.7%, respectively. The strategies developed in this study may also be useful for the metabolic engineering of fungi to produce other industrially relevant bulk chemicals.


Aspergillus niger , Fermentation , Malates , Metabolic Engineering , NADP , Aspergillus niger/metabolism , Aspergillus niger/genetics , Malates/metabolism , Metabolic Engineering/methods , NADP/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glucose/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism
8.
Mol Plant Pathol ; 25(5): e13463, 2024 May.
Article En | MEDLINE | ID: mdl-38695677

The barley powdery mildew fungus, Blumeria hordei (Bh), secretes hundreds of candidate secreted effector proteins (CSEPs) to facilitate pathogen infection and colonization. One of these, CSEP0008, is directly recognized by the barley nucleotide-binding leucine-rich-repeat (NLR) receptor MLA1 and therefore is designated AVRA1. Here, we show that AVRA1 and the sequence-unrelated Bh effector BEC1016 (CSEP0491) suppress immunity in barley. We used yeast two-hybrid next-generation interaction screens (Y2H-NGIS), followed by binary Y2H and in planta protein-protein interactions studies, and identified a common barley target of AVRA1 and BEC1016, the endoplasmic reticulum (ER)-localized J-domain protein HvERdj3B. Silencing of this ER quality control (ERQC) protein increased Bh penetration. HvERdj3B is ER luminal, and we showed using split GFP that AVRA1 and BEC1016 translocate into the ER signal peptide-independently. Overexpression of the two effectors impeded trafficking of a vacuolar marker through the ER; silencing of HvERdj3B also exhibited this same cellular phenotype, coinciding with the effectors targeting this ERQC component. Together, these results suggest that the barley innate immunity, preventing Bh entry into epidermal cells, requires ERQC. Here, the J-domain protein HvERdj3B appears to be essential and can be regulated by AVRA1 and BEC1016. Plant disease resistance often occurs upon direct or indirect recognition of pathogen effectors by host NLR receptors. Previous work has shown that AVRA1 is directly recognized in the cytosol by the immune receptor MLA1. We speculate that the AVRA1 J-domain target being inside the ER, where it is inapproachable by NLRs, has forced the plant to evolve this challenging direct recognition.


Ascomycota , Endoplasmic Reticulum , Hordeum , Plant Diseases , Plant Immunity , Plant Proteins , Hordeum/microbiology , Hordeum/genetics , Hordeum/immunology , Ascomycota/pathogenicity , Plant Proteins/metabolism , Plant Proteins/genetics , Endoplasmic Reticulum/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Immunity/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Protein Domains
9.
Appl Microbiol Biotechnol ; 108(1): 324, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713211

Laccase, a copper-containing polyphenol oxidase, is an important green biocatalyst. In this study, Laccase Lcc5 was homologous recombinantly expressed in Coprinopsis cinerea and a novel strategy of silencing chitinase gene expression was used to enhance recombinant Lcc5 extracellular yield. Two critical chitinase genes, ChiEn1 and ChiE2, were selected by analyzing the transcriptome data of C. cinerea FA2222, and their silent expression was performed by RNA interference (RNAi). It was found that silencing either ChiEn1 or ChiE2 reduced sporulation and growth rate, and increased cell wall sensitivity, but had no significant effect on mycelial branching. Among them, the extracellular laccase activity of the ChiE2-silenced engineered strain Cclcc5-antiChiE2-5 and the control Cclcc5-13 reached the highest values (38.2 and 25.5 U/mL, respectively) at 250 and 150 rpm agitation speeds, corresponding to productivity of 0.35 and 0.19 U/mL·h, respectively, in a 3-L fermenter culture. Moreover, since Cclcc5-antiChiE2-5 could withstand greater shear forces, its extracellular laccase activity was 2.6-fold higher than that of Cclcc5-13 when the agitation speed was all at 250 rpm. To our knowledge, this is the first report of enhanced recombinant laccase production in C. cinerea by silencing the chitinase gene. This study will pave the way for laccase industrial production and accelerate the development of a C. cinerea high-expression system. KEY POINTS: • ChiEn1 and ChiE2 are critical chitinase genes in C. cinerea FA2222 genome. • Chitinase gene silencing enhanced the tolerance of C. cinerea to shear forces. • High homologous production of Lcc5 is achieved by fermentation in a 3-L fermenter.


Chitinases , Gene Silencing , Laccase , Chitinases/genetics , Chitinases/metabolism , Chitinases/biosynthesis , Laccase/genetics , Laccase/metabolism , Laccase/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Agaricales/genetics , Agaricales/enzymology , Fermentation , RNA Interference , Fungal Proteins/genetics , Fungal Proteins/metabolism , Mycelium/genetics , Mycelium/growth & development , Mycelium/enzymology , Cell Wall/metabolism , Cell Wall/genetics
10.
BMC Genomics ; 25(1): 449, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714914

BACKGROUND: Previous studies have shown that protein kinase MoKin1 played an important role in the growth, conidiation, germination and pathogenicity in rice blast fungus, Magnaporthe oryzae. ΔMokin1 mutant showed significant phenotypic defects and significantly reduced pathogenicity. However, the internal mechanism of how MoKin1 affected the development of physiology and biochemistry remained unclear in M. oryzae. RESULT: This study adopted a multi-omics approach to comprehensively analyze MoKin1 function, and the results showed that MoKin1 affected the cellular response to endoplasmic reticulum stress (ER stress). Proteomic analysis revealed that the downregulated proteins in ΔMokin1 mutant were enriched mainly in the response to ER stress triggered by the unfolded protein. Loss of MoKin1 prevented the ER stress signal from reaching the nucleus. Therefore, the phosphorylation of various proteins regulating the transcription of ER stress-related genes and mRNA translation was significantly downregulated. The insensitivity to ER stress led to metabolic disorders, resulting in a significant shortage of carbohydrates and a low energy supply, which also resulted in severe phenotypic defects in ΔMokin1 mutant. Analysis of MoKin1-interacting proteins indicated that MoKin1 really took participate in the response to ER stress. CONCLUSION: Our results showed the important role of protein kinase MoKin1 in regulating cellular response to ER stress, providing a new research direction to reveal the mechanism of MoKin1 affecting pathogenic formation, and to provide theoretical support for the new biological target sites searching and bio-pesticides developing.


Endoplasmic Reticulum Stress , Fungal Proteins , Oryza , Proteomics , Oryza/microbiology , Oryza/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Plant Diseases/microbiology , Gene Expression Regulation, Fungal , Protein Kinases/metabolism , Protein Kinases/genetics , Mutation , Multiomics , Ascomycota
11.
BMC Biol ; 22(1): 108, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714997

BACKGROUND: Populations of the plant pathogenic fungus Verticillium dahliae display a complex and rich genetic diversity, yet the existence of sexual reproduction in the fungus remains contested. As pivotal genes, MAT genes play a crucial role in regulating cell differentiation, morphological development, and mating of compatible cells. However, the functions of the two mating type genes in V. dahliae, VdMAT1-1-1, and VdMAT1-2-1, remain poorly understood. RESULTS: In this study, we confirmed that the MAT loci in V. dahliae are highly conserved, including both VdMAT1-1-1 and VdMAT1-2-1 which share high collinearity. The conserved core transcription factor encoded by the two MAT loci may facilitate the regulation of pheromone precursor and pheromone receptor genes by directly binding to their promoter regions. Additionally, peptide activity assays demonstrated that the signal peptide of the pheromone VdPpg1 possessed secretory activity, while VdPpg2, lacked a predicted signal peptide. Chemotactic growth assays revealed that V. dahliae senses and grows towards the pheromones FO-a and FO-α of Fusarium oxysporum, as well as towards VdPpg2 of V. dahliae, but not in response to VdPpg1. The findings herein also revealed that VdMAT1-1-1 and VdMAT1-2-1 regulate vegetative growth, carbon source utilization, and resistance to stressors in V. dahliae, while negatively regulating virulence. CONCLUSIONS: These findings underscore the potential roles of VdMAT1-1-1 and VdMAT1-2-1 in sexual reproduction and confirm their involvement in various asexual processes of V. dahliae, offering novel insights into the functions of mating type genes in this species.


Genes, Mating Type, Fungal , Genes, Mating Type, Fungal/genetics , Ascomycota/genetics , Ascomycota/physiology , Pheromones/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Verticillium
12.
Nat Commun ; 15(1): 4261, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769341

Triazoles, the most widely used class of antifungal drugs, inhibit the biosynthesis of ergosterol, a crucial component of the fungal plasma membrane. Inhibition of a separate ergosterol biosynthetic step, catalyzed by the sterol C-24 methyltransferase Erg6, reduces the virulence of pathogenic yeasts, but its effects on filamentous fungal pathogens like Aspergillus fumigatus remain unexplored. Here, we show that the lipid droplet-associated enzyme Erg6 is essential for the viability of A. fumigatus and other Aspergillus species, including A. lentulus, A. terreus, and A. nidulans. Downregulation of erg6 causes loss of sterol-rich membrane domains required for apical extension of hyphae, as well as altered sterol profiles consistent with the Erg6 enzyme functioning upstream of the triazole drug target, Cyp51A/Cyp51B. Unexpectedly, erg6-repressed strains display wild-type susceptibility against the ergosterol-active triazole and polyene antifungals. Finally, we show that erg6 repression results in significant reduction in mortality in a murine model of invasive aspergillosis. Taken together with recent studies, our work supports Erg6 as a potentially pan-fungal drug target.


Antifungal Agents , Aspergillosis , Aspergillus , Ergosterol , Fungal Proteins , Methyltransferases , Triazoles , Animals , Methyltransferases/metabolism , Methyltransferases/genetics , Antifungal Agents/pharmacology , Aspergillus/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Mice , Aspergillosis/microbiology , Aspergillosis/drug therapy , Ergosterol/metabolism , Ergosterol/biosynthesis , Triazoles/pharmacology , Gene Expression Regulation, Fungal , Aspergillus fumigatus/genetics , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/enzymology , Aspergillus fumigatus/metabolism , Hyphae/drug effects , Hyphae/growth & development , Hyphae/genetics , Hyphae/metabolism , Female , Microbial Sensitivity Tests , Virulence/genetics
13.
Front Cell Infect Microbiol ; 14: 1369301, 2024.
Article En | MEDLINE | ID: mdl-38774630

Dual-specificity LAMMER kinases are highly evolutionarily conserved in eukaryotes and play pivotal roles in diverse physiological processes, such as growth, differentiation, and stress responses. Although the functions of LAMMER kinase in fungal pathogens in pathogenicity and stress responses have been characterized, its role in Cryptococcus neoformans, a human fungal pathogen and a model yeast of basidiomycetes, remains elusive. In this study, we identified a LKH1 homologous gene and constructed a strain with a deleted LKH1 and a complemented strain. Similar to other fungi, the lkh1Δ mutant showed intrinsic growth defects. We observed that C. neoformans Lkh1 was involved in diverse stress responses, including oxidative stress and cell wall stress. Particularly, Lkh1 regulates DNA damage responses in Rad53-dependent and -independent manners. Furthermore, the absence of LKH1 reduced basidiospore formation. Our observations indicate that Lkh1 becomes hyperphosphorylated upon treatment with rapamycin, a TOR protein inhibitor. Notably, LKH1 deletion led to defects in melanin synthesis and capsule formation. Furthermore, we found that the deletion of LKH1 led to the avirulence of C. neoformans in a systemic cryptococcosis murine model. Taken together, Lkh1 is required for the stress response, sexual differentiation, and virulence of C. neoformans.


Cryptococcosis , Cryptococcus neoformans , Melanins , Oxidative Stress , Stress, Physiological , Cryptococcus neoformans/pathogenicity , Cryptococcus neoformans/genetics , Cryptococcus neoformans/enzymology , Virulence , Animals , Cryptococcosis/microbiology , Mice , Melanins/metabolism , Disease Models, Animal , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Deletion , Phosphorylation , DNA Damage , Cell Wall/metabolism , Gene Expression Regulation, Fungal , Fungal Capsules/metabolism , Fungal Capsules/genetics , Sirolimus/pharmacology , Mice, Inbred BALB C , Female , Spores, Fungal/growth & development
14.
Microb Cell Fact ; 23(1): 146, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783303

BACKGROUND: Cellobiose dehydrogenase (CDH) is an extracellular fungal oxidoreductase with multiple functions in plant biomass degradation. Its primary function as an auxiliary enzyme of lytic polysaccharide monooxygenase (LPMO) facilitates the efficient depolymerization of cellulose, hemicelluloses and other carbohydrate-based polymers. The synergistic action of CDH and LPMO that supports biomass-degrading hydrolases holds significant promise to harness renewable resources for the production of biofuels, chemicals, and modified materials in an environmentally sustainable manner. While previous phylogenetic analyses have identified four distinct classes of CDHs, only class I and II have been biochemically characterized so far. RESULTS: Following a comprehensive database search aimed at identifying CDH sequences belonging to the so far uncharacterized class III for subsequent expression and biochemical characterization, we have curated an extensive compilation of putative CDH amino acid sequences. A sequence similarity network analysis was used to cluster them into the four distinct CDH classes. A total of 1237 sequences encoding putative class III CDHs were extracted from the network and used for phylogenetic analyses. The obtained phylogenetic tree was used to guide the selection of 11 cdhIII genes for recombinant expression in Komagataella phaffii. A small-scale expression screening procedure identified a promising cdhIII gene originating from the plant pathogen Fusarium solani (FsCDH), which was selected for expression optimization by signal peptide shuffling and subsequent production in a 5-L bioreactor. The purified FsCDH exhibits a UV-Vis spectrum and enzymatic activity similar to other characterized CDH classes. CONCLUSION: The successful production and functional characterization of FsCDH proved that class III CDHs are catalytical active enzymes resembling the key properties of class I and class II CDHs. A detailed biochemical characterization based on the established expression and purification strategy can provide new insights into the evolutionary process shaping CDHs and leading to their differentiation into the four distinct classes. The findings have the potential to broaden our understanding of the biocatalytic application of CDH and LPMO for the oxidative depolymerization of polysaccharides.


Carbohydrate Dehydrogenases , Phylogeny , Recombinant Proteins , Carbohydrate Dehydrogenases/genetics , Carbohydrate Dehydrogenases/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fusarium/genetics , Fusarium/enzymology , Cellulose/metabolism , Amino Acid Sequence
15.
Biomolecules ; 14(5)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38785924

Cytokinins (CKs) and abscisic acid (ABA) play an important role in the life of both plants and pathogenic fungi. However, the role of CKs and ABA in the regulation of fungal growth, development and virulence has not been sufficiently studied. We compared the ability of two virulent isolates (SnB and Sn9MN-3A) and one avirulent isolate (Sn4VD) of the pathogenic fungus Stagonospora nodorum Berk. to synthesize three groups of hormones (CKs, ABA and auxins) and studied the effect of exogenous ABA and zeatin on the growth, sporulation and gene expression of necrotrophic effectors (NEs) and transcription factors (TFs) in them. Various isolates of S. nodorum synthesized different amounts of CKs, ABA and indoleacetic acid. Using exogenous ABA and zeatin, we proved that the effect of these hormones on the growth and sporulation of S. nodorum isolates can be opposite, depends on both the genotype of the isolate and on the concentration of the hormone and is carried out through the regulation of carbohydrate metabolism. ABA and zeatin regulated the expression of fungal TF and NE genes, but correlation analysis of these parameters showed that this effect depended on the genotype of the isolate. This study will contribute to our understanding of the role of the hormones ABA and CKs in the biology of the fungal pathogen S. nodorum.


Abscisic Acid , Ascomycota , Cytokinins , Abscisic Acid/metabolism , Cytokinins/metabolism , Ascomycota/metabolism , Ascomycota/pathogenicity , Ascomycota/genetics , Ascomycota/drug effects , Virulence , Gene Expression Regulation, Fungal/drug effects , Plant Diseases/microbiology , Transcription Factors/metabolism , Transcription Factors/genetics , Zeatin/metabolism , Zeatin/pharmacology , Spores, Fungal/growth & development , Spores, Fungal/metabolism , Spores, Fungal/drug effects , Fungal Proteins/metabolism , Fungal Proteins/genetics
16.
Int J Biol Macromol ; 268(Pt 2): 131938, 2024 May.
Article En | MEDLINE | ID: mdl-38692539

ING proteins display a high level of evolutionary conservation across various species, and play a crucial role in modulating histone acetylation levels, thus regulating various important biological processes in yeast and humans. Filamentous fungi possess distinct biological characteristics that differentiate them from yeasts and humans, and the specific roles of ING proteins in filamentous fungi remain largely unexplored. In this study, an ING protein, Fng2, orthologous to the yeast Pho23, has been identified in the wheat head blight fungus Fusarium graminearum. The deletion of the FNG2 gene resulted in defects in vegetative growth, conidiation, sexual reproduction, plant infection, and deoxynivalenol (DON) biosynthesis. Acting as a global regulator, Fng2 exerts negative control over histone H4 acetylation and governs the expression of over 4000 genes. Moreover, almost half of the differentially expressed genes in the fng3 mutant were found to be co-regulated by Fng2, emphasizing the functional association between these two ING proteins. Notably, the fng2 fng3 double mutant exhibits significantly increased H4 acetylation and severe defects in both fungal development and pathogenesis. Furthermore, Fng2 localizes within the nucleus and associates with the FgRpd3 histone deacetylase (HDAC) to modulate gene expression. Overall, Fng2's interaction with FgRpd3, along with its functional association with Fng3, underscores its crucial involvement in governing gene expression, thereby significantly influencing fungal growth, asexual and sexual development, pathogenicity, and secondary metabolism.


Fungal Proteins , Fusarium , Gene Expression Regulation, Fungal , Histone Deacetylases , Plant Diseases , Triticum , Fusarium/pathogenicity , Fusarium/genetics , Triticum/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Acetylation , Plant Diseases/microbiology , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histones/metabolism , Trichothecenes/metabolism , Mutation , Protein Binding
17.
PLoS Pathog ; 20(5): e1012225, 2024 May.
Article En | MEDLINE | ID: mdl-38739655

Biofilm formation by the fungal pathogen Candida albicans is the basis for its ability to infect medical devices. The metabolic gene ERG251 has been identified as a target of biofilm transcriptional regulator Efg1, and here we report that ERG251 is required for biofilm formation but not conventional free-living planktonic growth. An erg251Δ/Δ mutation impairs biofilm formation in vitro and in an in vivo catheter infection model. In both in vitro and in vivo biofilm contexts, cell number is reduced and hyphal length is limited. To determine whether the mutant defect is in growth or some other aspect of biofilm development, we examined planktonic cell features in a biofilm-like environment, which was approximated with sealed unshaken cultures. Under those conditions, the erg251Δ/Δ mutation causes defects in growth and hyphal extension. Overexpression in the erg251Δ/Δ mutant of the paralog ERG25, which is normally expressed more weakly than ERG251, partially improves biofilm formation and biofilm hyphal content, as well as growth and hyphal extension in a biofilm-like environment. GC-MS analysis shows that the erg251Δ/Δ mutation causes a defect in ergosterol accumulation when cells are cultivated under biofilm-like conditions, but not under conventional planktonic conditions. Overexpression of ERG25 in the erg251Δ/Δ mutant causes some increase in ergosterol levels. Finally, the hypersensitivity of efg1Δ/Δ mutants to the ergosterol inhibitor fluconazole is reversed by ERG251 overexpression, arguing that reduced ERG251 expression contributes to this efg1Δ/Δ phenotype. Our results indicate that ERG251 is required for biofilm formation because its high expression levels are necessary for ergosterol synthesis in a biofilm-like environment.


Biofilms , Candida albicans , Candidiasis , Fungal Proteins , Biofilms/growth & development , Candida albicans/metabolism , Candida albicans/genetics , Candida albicans/physiology , Fungal Proteins/metabolism , Fungal Proteins/genetics , Animals , Candidiasis/microbiology , Candidiasis/metabolism , Hyphae/metabolism , Mice , Gene Expression Regulation, Fungal , Ergosterol/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Mutation
18.
Plant Cell Rep ; 43(6): 145, 2024 May 18.
Article En | MEDLINE | ID: mdl-38761220

KEY MESSAGE: We highlight the emerging role of the R. solani novel lipase domain effector AGLIP1 in suppressing pattern-triggered immunity and inducing plant cell death. The dynamic interplay between plants and Rhizoctonia solani constitutes a multifaceted struggle for survival and dominance. Within this complex dynamic, R. solani has evolved virulence mechanisms by secreting effectors that disrupt plants' first line of defense. A newly discovered effector, AGLIP1 in R. solani, plays a pivotal role in inducing plant cell death and subverting immune responses. AGLIP1, a protein containing a signal peptide and a lipase domain, involves complex formation in the intercellular space, followed by translocation to the plant cytoplasm, where it induces cell death (CD) and suppresses defense gene regulation. This study provides valuable insights into the intricate molecular interactions between plants and necrotrophic fungi, underscoring the imperative for further exploration in this field.


Lipase , Plant Diseases , Rhizoctonia , Rhizoctonia/pathogenicity , Rhizoctonia/physiology , Plant Diseases/microbiology , Plant Diseases/immunology , Lipase/metabolism , Lipase/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Cell Death , Plant Immunity/genetics , Protein Domains , Gene Expression Regulation, Plant
19.
Sci Rep ; 14(1): 11729, 2024 05 22.
Article En | MEDLINE | ID: mdl-38778216

Filamentous fungi are eukaryotic microorganisms that differentiate into diverse cellular forms. Recent research demonstrated that phospholipid homeostasis is crucial for the morphogenesis of filamentous fungi. However, phospholipids involved in the morphological regulation are yet to be systematically analyzed. In this study, we artificially controlled the amount of phosphatidylcholine (PC), a primary membrane lipid in many eukaryotes, in a filamentous fungus Aspergillus oryzae, by deleting the genes involved in PC synthesis or by repressing their expression. Under the condition where only a small amount of PC was synthesized, A. oryzae hardly formed aerial hyphae, the basic structures for asexual development. In contrast, hyphae were formed on the surface or in the interior of agar media (we collectively called substrate hyphae) under the same conditions. Furthermore, we demonstrated that supplying sufficient choline to the media led to the formation of aerial hyphae from the substrate hyphae. We suggested that acyl chains in PC were shorter in the substrate hyphae than in the aerial hyphae by utilizing the strain in which intracellular PC levels were controlled. Our findings suggested that the PC levels regulate hyphal elongation and differentiation processes in A. oryzae and that phospholipid composition varied depending on the hyphal types.


Aspergillus oryzae , Hyphae , Phosphatidylcholines , Hyphae/growth & development , Hyphae/metabolism , Phosphatidylcholines/metabolism , Aspergillus oryzae/metabolism , Aspergillus oryzae/genetics , Aspergillus oryzae/growth & development , Choline/metabolism , Gene Expression Regulation, Fungal , Fungal Proteins/metabolism , Fungal Proteins/genetics
20.
Toxins (Basel) ; 16(5)2024 May 09.
Article En | MEDLINE | ID: mdl-38787069

The fungal cell wall serves as the primary interface between fungi and their external environment, providing protection and facilitating interactions with the surroundings. Chitin is a vital structural element in fungal cell wall. Chitin deacetylase (CDA) can transform chitin into chitosan through deacetylation, providing various biological functions across fungal species. Although this modification is widespread in fungi, the biological functions of CDA enzymes in Aspergillus flavus remain largely unexplored. In this study, we aimed to investigate the biofunctions of the CDA family in A. flavus. The A. flavus genome contains six annotated putative chitin deacetylases. We constructed knockout strains targeting each member of the CDA family, including Δcda1, Δcda2, Δcda3, Δcda4, Δcda5, and Δcda6. Functional analyses revealed that the deletion of CDA family members neither significantly affects the chitin content nor exhibits the expected chitin deacetylation function in A. flavus. However, the Δcda6 strain displayed distinct phenotypic characteristics compared to the wild-type (WT), including an increased conidia count, decreased mycelium production, heightened aflatoxin production, and impaired seed colonization. Subcellular localization experiments indicated the cellular localization of CDA6 protein within the cell wall of A. flavus filaments. Moreover, our findings highlight the significance of the CBD1 and CBD2 structural domains in mediating the functional role of the CDA6 protein. Overall, we analyzed the gene functions of CDA family in A. flavus, which contribute to a deeper understanding of the mechanisms underlying aflatoxin contamination and lay the groundwork for potential biocontrol strategies targeting A. flavus.


Aflatoxins , Amidohydrolases , Aspergillus flavus , Aspergillus flavus/genetics , Aspergillus flavus/enzymology , Aspergillus flavus/metabolism , Amidohydrolases/genetics , Amidohydrolases/metabolism , Aflatoxins/biosynthesis , Aflatoxins/metabolism , Aflatoxins/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Chitin/metabolism , Cell Wall/metabolism
...